学术活动
导师介绍

张惠明
研究员,博士生导师


Email: hmzhang@sibs.ac.cn
Phone:(86) 21-57078277

个人简介:
1998-2002年 南京大学,获化学学士学位

2002-2007年 美国德州理工大学,获生物化学博士学位

2007-2009年 美国德州理工大学,博士后

2009-2010年 美国加州大学河滨分校,博士后

2011-2014年 美国普度大学,博士后

2014-至今 中国科学院上海植物逆境生物学研究中心,研究员

研究方向:
植物化学生态学和表观遗传学

研究工作:
Living organisms integrate environmental signals with intrinsic developmental programs to control gene regulatory networks for optimized survival. Transcription potential is determined by the accessibility of DNA sequences within the chromatin, which can be adjusted from a compact status to an easy-to-access condition, and vice verse, through individual or combined epigenetic modifications. Plants live naturally with many different soil microorganisms, among which bacteria are the most abundant. Certain beneficial soil microbes are capable of affecting plant growth and/or stress response through microbial volatile emissions. We are interested in the molecular mechanisms underlying microbial volatile-mediated plant growth regulation, as well as epigenetic mechanisms underlying gene regulatory networks that are responsible for plant-microbe interactions.

代表性论文:
40. Zhang H*, Zhu JK*. (2017) New Discoveries Generate New Questions about RNA-directed DNA methylation in Arabidopsis. Natl. Sci. Rev. (in press) (* Co-corresponding author)

39. Yang Y, La H, Tang K, Miki D, Yang L, Wang B, Duan CG, Nie W, Wang X, Wang S, Pan Y, Tran EJ, An L, Zhang H*, Zhu JK*. (2017) SAC3B, a central component of the mRNA export complex TREX-2, is required for prevention of epigenetic gene silencing in Arabidopsis. Nucleic Acids Res. 45: 181-197. (* Co-corresponding author)

38. Zhang Q, Wang D, Lang Z, He L, Yang L, Zeng L, Li Y, Zhao C, Huang H, Zhang H, Zhang H, Zhu JK. (2016) Methylation interactions in Arabidopsis hybrids require RNA-directed DNA methylation and are influenced by genetic variation. Proc Natl Acad Sci U S A. 113: E4248-56.

37. Liu XM, Zhang H. * (2015) The effects of bacterial volatile emissions on plant abiotic stress tolerance. Front. Plant Sci. 6:774. (* Corresponding author)

36. Duan CG, Wang X, Tang K, Zhang H, Mangrauthia SK, Lei M, Hsu CC, Hou YJ, Wang C, Li Y, Tao WA, Zhu JK. (2015) MET18 Connects the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Active DNA Demethylation in Arabidopsis. PLoS Genet. 11: e1005559.

35. Freitas, M., Medeiros, F., Carvalho, S., Guilherme, L., Teixeira, W., Zhang, H., Paré, P. (2015) Augmenting Iron Accumulation in Cassava by the Beneficial Soil Bacterium Bacillus subtilis (GBO3). Front. Plant Sci. In press

34. Lei, M., Zhang, H., Julian, R., Tang, K., Xie, S., Zhu, J-K (2015) Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 112: 3553-3557.

33. Wang, B., Duan, C., Wang, X., Hou, Y., Yan, J., Gao, C., Kim, J., Zhang, H., Zhu, J-K (2015) HOS1 Regulates Argonaute1 by Promoting the Transcription of the MicroRNA Gene MIR168b in Arabidopsis. Plant J. 81: 861-870.

32. Lang, Z., Lei, M., Wang, X., Tang, K., Miki, D., Zhang H., Mangrauthia S.K., Liu, W., Nie, W., Ma, G., Yan, J., Duan C., Hsu, C., Wang, C., Tao, A., Gong, Z., Zhu, J-K (2015) The methyl-CpG-binding protein MBD7 facilitates active DNA demethylation to limit DNA hypermethylation and transcriptional gene silencing. Mol. Cell 57:1-13.

31. Duan, C. #, Zhang, H. #, Tang, K. #, Wang, B., Lang, Z., Zhou, J., Zhu, J.-K. (2015) Specific but interdependent functions for Arabidopsis AGO4 and AGO6 in RNA-directed DNA methylation. EMBO J. 34(5):581-592. # Co-first author

30. Li, Y., Córdoba-Cañero, D., Qian, W., Zhu, X., Tang, K., Zhang, H., Ariza, R., Roldán-Arjon, T., Zhu, J.-K. (2015) An AP endonuclease functions in active DNA demethylation and gene imprinting in Arabidopsis. PLoS Genet. 11(1):e1004905.

29. Zhang, H.*, Zhu, J.-K. (2014) Emerging roles of RNA processing factors in regulating long non-coding RNAs. RNA Biol. 11(7):793-7. * Corresponding author

28. Zhang, H.*, Tang K., Wang, B., Lang, Z., Zhu, J.-K.* (2014) Protocol: a beginner's guide to the analysis of RNA-directed DNA methylation in plants. Plant Methods 10:18. * Co-corresponding author

27. Zhang, H.*, Tang K, Qian, W., Zhang, H., Wang, P.C., Wang, B., Duan, C., Lang, Z., Yang, Y., Zhu, J.-K.* (2014) An Rrp6-like Protein Positively Regulates Non-coding RNA Levels and DNA Methylation in Arabidopsis. Mol Cell 54: 418-430. * Co-corresponding author

26. Qian,W., Miki, D., Lei, M., Zhu, X., Zhang, H., Liu, Y., Li, Y., Zhao, Y., Lang, Z., Wang, J., Tang, K., Liu, R., Gong, Z., Zhu, J.-K. (2014) Regulation of Active DNA Demethylation by An α-Crystallin Domain Protein in Arabidopsis. Mol Cell 55: 361-371.

25. Hsu, Y.F., Hsiao, Y.C., Wang, C.S., Zhan, X., Zhang, H., Wang, C.S. (2014) AtRRP6L1, a homologue of conserved yeast exosomal Rrp6p, plays an important role in transcriptional gene silencing in Arabidopsis. Mol Plant 7: 1490-1493.

24. Wang, X., Duan, C.,Tang, K., Wang, B., Zhang, H., Lei, M., Lu, K., Mangrauthia, S.K., Wang, P., Zhu, G., Zhao, Y., Zhu, J.-K. (2013) RNA-binding protein regulates plant DNA methylation by controlling mRNA processing at the intronic heterochromatin-containing gene IBM1. Proc. Natl. Acad. Sci. U.S.A. 110: 15467-15472.

23. Zhang, H., Zhu, J-K. (2013) Chemical probes in plant epigenetics studies. Plant Signal Behav. 8(9). pii: e25364.

22. Farag, M.A., Zhang H., Ryu C.M. (2013) Dynamic chemical crosstalk between plants and bacteria through airborne signals. J. Chem. Ecol. 39: 1007-1018.

21. Zhang, X., Li, Y., Wu, Z., Polishka, A., Zhang, H., Chinnusamy, V., Lonardi, S., Zhu, J.-K, Liu, R., Jin, H. (2013) Mechanisms of small RNA generation from cis-NATs in response to environmental and developmental cues. Mol. Plant 6: 704-715.

20. Wang, P., Xue, L., Batelli, G., Lee, S., Hou, Y., Oosten V., Zhang, H., Tao, W., Zhu, J.-K. (2013) Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc. Natl. Acad. Sci. U.S.A. 110: 11205-11210.

19. Zhang, H., Zhu, J.-K. (2012) Active DNA demethylation in plants and animals. Cold Spring Harb Symp Quant Biol. 77: 161-173.

18. Zhang, H., Deng, X., Miki, D., Culter, S., Oh, J., Zhu, J-K. (2012) Sulfamethazine suppresses epigenetic silencing in Arabidopsis by impairing folate synthesis. Plant Cell 24: 1230-1241.

17. Soon, F-F, Ng, L-M, Zhou, X.E., West, G.M., Kovach, A., Tan, M.H.E.,Suino-Powell, K.M., He,Y., Xu,Y., Chalmers, M.J., Brunzelle, J.S., Zhang, H., Yang, H., Jiang, H., Li, J., Yong, E.-.L, Cutler, S., Zhu, J.-K., Griffin, P.R., Melcher, K., Xu, H.E. (2012) Molecular mimicry regulates ABA signaling by SnRK2 Kinases and PP2C Phosphatases. Science 335: 85-88.

16. Zhang, H., Zhu, J.-K. (2012) Seeing the forest for the trees: a wide perspective of RNA-directed DNA methylation. Genes Dev. 26: 1769-1773.

15. Zhang, X, Xia, J, Li, YE, Barrera-Figueroa, BE, Zhou, X, Gao, S, Lu, L, Niu, D, Chen, Z, Leung, C, Wong, T, Zhang, H, Guo, J, Li, Y, Liu, R, Liang, W, Zhu, J-K, Zhang, W, Jin, H. (2012) Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol. 13: R20.

14. Medeiros, F.H.V., Souza, R.M., Medeiros, F.C.L., Zhang, H., Wheeler, T., Payton, P., Ferro, H.M., Paré, P.W. (2011) Transcriptional profiling in cotton associated with Bacillus subtilis (UFLA285) induced biotic-stress tolerance. Plant Soil 347: 327-337.

13. Zhang, H., Zhu, J.-K. (2011) RNA-directed DNA methylation. Curr. Opin. Plant Biol. 14: 142-147.

12. Paré, P.W., Zhang, H., Aziz, M., Xie, X., Kim, M.S., Shen, X., Zhang, J. (2011) Beneficial rhizobacteria induce plant growth: mapping signaling networks in Arabidopsis. Biocommunication in Soil Microorganisms, Soil Biology 23, (G. Witzany ed.) Springer-Verlag Berlin Heidelberg.

11. Zhang, H., Murzello, C., Sun, Y., Kim, M.S., Xie, X., Jeter, R.M., Zak, J.C., Dowd, S.E., Paré, P.W. (2010) Choline and Osmotic-Stress Tolerance Induced in Arabidopsis by the Soil Microbe Bacillus subtilis (GB03). Mol. Plant Microbe Interact. 23: 1097–1104.

10. Zhang, H., Sun, Y., Xie, X., Kim, M.S., Dowd, S.E., Paré, P.W. (2009) A soil bacteria regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J. 58: 568-577.

9. Banchio, E., Xie, X., Zhang, H., Paré, P.W. (2009) Soil bacteria elevate essential oil accumulation and emissions in Sweet Basil. J. Agric. Food Chem. 57: 653-657.

8. Xie, X., Zhang, H., Paré, P.W. (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal. Behav. 4: 948-953.

7. Medeiros, F.C.L., Resende, M.L.V., Medeiros, F.H.V., Zhang, H., Paré, P.W. (2009) Defense gene expression induced by a coffee-leaf extract formulation in tomato. Physiol. Mol. Plant. Path. 74: 175-183.

6. Zhang, H., Xie, X., Kim, M.S., Kornyeyev, D.A., Holaday, S., Paré, P.W. (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J. 56: 264-273.

5. Zhang, H., Kim, M.S., Sun, Y., Dowd, S.E., Shi, H., Paré, P.W. (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol. Plant Microbe Interact. 21: 737-744.

4. Ryu, C.M., Yi, H.S., Ahn, Y.R., Kim, W., Zhang, H., Park, S.H., Park, C.S., Farag, M.A., Paré, P.W., Kloepper, J.W. (2008) Dynamic communication between plants and rhizobacteria via volatile signals. Biology of Plant-Microbe Interactions, Volume 6 (M Lorito, SL Woo and F Scala eds.) International Society for Molecular Plant-Microbe Interactions, St. Paul.

3. Zhang, H., Kim, M.S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M.A., Ryu, C.M., Allen, R., Melo, I.S., Paré, P.W. (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226: 839-851.

2. Farag, M.A., Fokar, M., Abd, H., Zhang, H., Allen, R.D., Paré, P.W. (2005) (Z)-3-Hexenol induces defense genes and downstream metabolites in Maize. Planta 220: 900 – 909.

1. Paré, P.W., Farag, M.A., Krishnamachari, V., Zhang, H., Ryu, C.M., Kloepper, J.W. (2005) Elicitors and priming agents initiate plant defense responses. Photosynth Res. 85: 149 – 159.